Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Food Chem ; 452: 139532, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38705120

RESUMO

This study aimed to better understand whether and how the reactive 1,2-dicarbonyl precursors of advanced glycation end products (AGEs), glyoxal (GO) and methylglyoxal (MGO), cross the intestinal barrier by studying their transport in the in vitro Caco-2 transwell system. The results reveal that GO, MGO and Nε-(carboxymethyl)lysine (CML), the latter studied for comparison, are transported across the intestinal cell layer via both active and passive transport and accumulate in the cells, albeit all to a limited extent. Besides, the transport of the dicarbonyl compounds was only partially affected by the presence of amino acids and protein, suggesting that scavenging by a food matrix will not fully prevent their intestinal absorption. Our study provides new insights into the absorption of the two major food-borne dicarbonyl AGE precursors and provides evidence of their potential systemic bioavailability but also of factors limiting their contribution to the overall exposome.

2.
Food Chem ; 450: 139311, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38636377

RESUMO

Gold nanoparticles (AuNPs)-based immunochromatographic assay has gained popularity as a rapid detection method for food hazards. Synthesizing highly stable AuNPs in a rapid, simple and environmentally friendly manner is a key focus in this field. Here, we present a green microfluidic strategy for the rapid, automated, and size-controllable synthesis of pepsin-doped AuNPs (AuNPs@Pep) by employing glucose-pepsin as a versatile reducing agent and stabilizer. Through combining the colorimetric and photothermal (PoT) properties of AuNPs@Pep, both "signal-off" and "signal-on" formats of microfluidic paper analytical devices (PADs) were developed for detection of a small molecule antibiotic, florfenicol, and an egg allergen, ovalbumin. Compared to the colorimetric mode, a 4-fold and 3-fold improvement in limit of detection was observed in the "signal-off" detection of florfenicol and the "signal-on" detection of ovalbumin, respectively. The results demonstrated the practicality of AuNPs@Pep as a colorimetric/PoT dual-readout probe for immunochromatographic detection of food hazards at different molecular scales.

3.
Food Chem ; 447: 138985, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38507952

RESUMO

Myofibrillar protein (MP) is susceptible to the effect of ionic strength and ultra-high pressure (UHP) treatment, respectively. However, the impact of UHP combined with ionic strength on the structure and in vitro digestibility of MP from scallop mantle (Patinopecten yessoensis) is not yet clear. Therefore, it is particularly important to analyze the structural properties and enhance the in vitro digestibility of MP by NaCl and UHP treatment. The findings demonstrated that as ionic strength increased, the α-helix and ß-sheet gradually transformed into ß-turn and random coil. The decrease of endogenous fluorescence intensity indicated the formation of a more stable tertiary structure. Additionally, the exposure of internal sulfhydryl groups increased the amount of total sulfhydryl content, and reactive sulfhydryl groups gradually transformed into disulfide bonds. Moreover, it reduces aggregation through increased solubility, decreased turbidity, particle sizes, and a relatively dense and uniform microstructure. When MP from the scallop mantle was treated with 0.5 mol/L ionic strength and 200 MPa UHP treatment, it had the highest solubility (90.75 ± 0.13%) and the lowest turbidity (0.41 ± 0.03). The scallop mantle MP with NaCl of 0.3 mol/L and UHP treatment had optimal in vitro digestibility (95.14 ± 2.01%). The findings may offer a fresh perspectives for developing functional foods for patients with dyspepsia and a theoretical foundation for the comprehensive utilization of scallop mantle by-products with low concentrations of NaCl.


Assuntos
Pectinidae , Cloreto de Sódio , Animais , Humanos , Cloreto de Sódio/metabolismo , Proteínas/química , Pectinidae/química , Cloreto de Sódio na Dieta
4.
Foods ; 13(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38540878

RESUMO

A bacteria capable of degrading aflatoxin M1 (AFM1) was isolated from African elephant manure. It was identified as Bacillus pumilus by 16s rDNA sequencing and named B. pumilusE-1-1-1. Compared with physical and chemical methods, biological methods have attracted much attention due to their advantages, such as thorough detoxification, high specificity, and environmental friendliness. This work aimed to study the effects of a recombinant catalase (rCAT) from B. pumilusE-1-1-1 on the degradation of AFM1 in pattern solution. The degradation mechanism was further explored and applied to milk and beer. Kinetic Momentum and Virtual Machine Maximum values for rCAT toward AFM1 were 4.1 µg/mL and 2.5 µg/mL/min, respectively. The rCAT-mediated AFM1 degradation product was identified as C15H14O3. Molecular docking simulations suggested that hydrogen and pi bonds played major roles in the steadiness of AFM1-rCAT. In other work, compared with identical density of AFM1, survival rates of Hep-G2 cells incubated with catalase-produced AFM1 degradation products increased by about 3 times. In addition, degradation rates in lager beer and milk were 31.3% and 47.2%, respectively. Therefore, CAT may be a prospective substitute to decrease AFM1 contamination in pattern solution, milk, and beer, thereby minimizing its influence on human health.

5.
Int J Biol Macromol ; 266(Pt 2): 131090, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38537858

RESUMO

In this study, modified sea Cucumber Peptides (SCP) were prepared by reacting with xylooligosaccharide (XOS) and alginate oligosaccharides (AOS) via glycation. Free radical inhibitory and inhibition of oxidative stress of modified SCP was evaluated using human hepatocellular carcinoma (HepG2) cells and zebrafish embryos. LC-MS analysis revealed that SCPs mainly consist of 40 active peptides, with an average molecular weight of 1122.168 Da and an average length of 11 amino acid residues. For amino acid composition, L-Asparagine, L-Methionine, and L-Aspartic Acid were dominant amino acids in SCP. The result showed that the antioxidant ability of SCP against 2,2-Diphenyl-1-picrylhydrazyl (DPPH), superoxide anion radical (O-2), and Hydroxyl Radical (OH) was significantly improved after modification. In HepG2 cells, the modified SCP showed stronger protection than native SCP native against H2O2-induced oxidative stress by enhancing cell viability and reducing radical oxygen species (ROS) generation. The inhibition effect of SCP was increased after modification with XOS and AOS by 13 % and 19 % respectively. Further studies displayed that the activity of antioxidative enzymes, including Superoxide dismutase (SOD), Glutathione Peroxidase (GPx), and catalase (CAT), was remarkably enhanced, whereas malondialdehyde (MDA) level was reduced compared with native SCP and H2O2-treated groups, thus, improving the intracellular antioxidant defenses. The gene expression analysis showed that the mechanism underlying the modified SCP protective effect may be linked with the capability to regulate Nuclear factor-erythroid factor 2-related factor 2 (NRF2) gene expression. The protective effect of modified SCP against H2O2 in vitro was confirmed in vivo by reduced toxicity in zebrafish embryos via improvement of mortality rate, hatching rate, heart beating rate, and deformities of the zebrafish model. However, SCPAOS conjugate displayed greater antioxidant potentials compared to the SCPXOS, the different effects between SCPAOS and SCPXOS could be due to their different antioxidant activity. Thus, modified SCP could be potentially used as a novel nutraceutical in the preparation of anti-aging food and medicine.


Assuntos
Antioxidantes , Peróxido de Hidrogênio , Estresse Oxidativo , Peptídeos , Pepinos-do-Mar , Peixe-Zebra , Animais , Células Hep G2 , Peróxido de Hidrogênio/farmacologia , Humanos , Estresse Oxidativo/efeitos dos fármacos , Pepinos-do-Mar/química , Peptídeos/farmacologia , Peptídeos/química , Antioxidantes/farmacologia , Antioxidantes/química , Espécies Reativas de Oxigênio/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Catalase/metabolismo
6.
Biosens Bioelectron ; 252: 116139, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38412686

RESUMO

Micro/nanomaterials display considerable potential for increasing the sensitivity of lateral flow immunoassay (LFIA) by acting as 3D carriers for both antibodies and signals. The key to achieving high detection sensitivity depends on the probe's orientation on the material surface and its multivalent biomolecular interactions with targets. Here, we engineer Lactococcus lactis as the bacterial microcarrier (BMC) for a multivalent immunorecognition probe that was genetically programmed to display multifunctional components including a phage-screened single-chain variable fragment (scFv), an enhanced green fluorescent protein (eGFP), and a C-terminal peptidoglycan-binding domain (AcmA) anchored on BMC through the cell wall peptidoglycan. The innovative design of this biocarrier system, which incorporates a lab-on-a-chip microfluidic device, allows for the rapid and non-destructive self-assembly of the multivalent scFv-eGFP-AcmA@BMC probe, in which the 3D structure of BMC with a large peptidoglycan surface area facilitates the precisely orientated attachment and immobilization of scFv-eGFP-AcmA. This leads to a remarkable fluorescence aggregation amplification effect in LFIA, outperforming a monovalent 2D scFv-eGFP-AcmA probe for florfenicol detection. By designing a portable sensing device, we achieved an exceptionally low detection limit of 0.28 pg/mL and 0.21 pg/mL for florfenicol in lake water and milk sample, respectively. The successful microfabrication of this biocarrier holds potential to inspire innovative biohybrid designs for environment and food safety biosensing applications.


Assuntos
Técnicas Biossensoriais , Lactococcus lactis , Tianfenicol/análogos & derivados , Animais , Antibacterianos/metabolismo , Lactococcus lactis/genética , Lactococcus lactis/química , Peptidoglicano/metabolismo , Microtecnologia , Leite , Lagos , Imunoensaio , Água
7.
Anal Chim Acta ; 1293: 342283, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38331551

RESUMO

Recombinant antibody-based immunoassays have emerged as crucial techniques for detecting antibiotic residues in food samples. Developing a stable recombinant antibody production system and enhancing detection sensitivity are crucial for their biosensing applications. Here, we bioengineered a single-chain fragment variable (scFv) antibody to target chloramphenicol (CAP) using both Bacillus subtilis and HEK 293 systems, with the HEK 293-derived scFv demonstrating superior sensitivity. Computational chemistry analyses indicated that ASP-99 and ASN-102 residues in the scFv play key roles in antibody recognition, and the hydroxyl group near the benzene ring of the target molecule is critical for in antibody binding. Furthermore, we enhanced the scFv's biosensing sensitivity using an HCR-CRISPR/Cas12a amplification strategy in a streptavidin-based immunoassay. In the dual-step amplification process, detection limits for CAP in the HCR and HCR-CRISPR/Cas12a stages were significantly reduced to 55.23 pg/mL and 3.31 pg/mL, respectively. These findings introduce an effective method for developing CAP-specific scFv antibodies and also propose a multi-amplification strategy to increase immunoassay sensitivity. Additionally, theoretical studies also offer valuable guidance in CAP hapten design and genetic engineering for antibody modification.


Assuntos
Técnicas Biossensoriais , Cloranfenicol , Humanos , Sistemas CRISPR-Cas , Células HEK293 , Hibridização de Ácido Nucleico , Fluorimunoensaio , Anticorpos
8.
J Agric Food Chem ; 72(4): 2214-2228, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38237048

RESUMO

Previously, Lactobacillus paracasei VL8, a lactobacillus strain isolated from the traditional Finnish fermented dairy product Viili, demonstrated immunomodulatory and antibacterial effects. The prebiotic mannan-oligosaccharide (MOS) further promoted its antibacterial activity and growth performance, holding promise for maintaining intestinal health. However, this has not been verified in vivo. In this study, we elucidated the process by which L. paracasei VL8 and its synbiotc combination (SYN) with MOS repair the intestinal barrier function in dextran sodium sulfate (DSS)-induced colitis mice. SYN surpasses VL8 or MOS alone in restoring goblet cells and improving the tight junction structure. Omics analysis on gut microbiota reveals SYN's ability to restore Lactobacillus spp. abundance and promote tryptophan metabolism. SYN intervention also inhibits the DSS-induced hyperactivation of the Wnt/ß-catenin pathway. Tryptophan metabolites from Lactobacillus induce intestinal organoid differentiation. Co-housing experiments confirm microbiota transferability, replicating intestinal barrier repair. In conclusion, our study highlights the potential therapeutic efficacy of the synbiotic combination of Lactobacillus paracasei VL8 and MOS in restoring the damaged intestinal barrier and offers new insights into the complex crosstalk between the gut microbiota and intestinal stem cells.


Assuntos
Colite , Lacticaseibacillus paracasei , Probióticos , Simbióticos , Animais , Camundongos , Sulfato de Dextrana/efeitos adversos , Mananas , Probióticos/farmacologia , Nicho de Células-Tronco , Triptofano , Colite/induzido quimicamente , Colite/genética , Colite/terapia , Lactobacillus , Oligossacarídeos , Antibacterianos/efeitos adversos , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Colo
9.
Food Chem ; 438: 138003, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-37979258

RESUMO

The aim of this study was to investigate the effect of different thermal processing methods on the nutritional and physicochemical qualities of Penaeus vannamei. Three different thermal processing methods, namely, drying (DS, 120 °C/40 min), steaming (SS, 100 °C/2 min), and microwaving (MS, 600 W/2 min) were used to treat the shrimps. Low-field nuclear magnetic resonance data indicated that fixed water was the main component of Penaeus vannamei. The ratio of fatty acids in MS and DS samples was more in line with the FAO/WHO recommended health requirements; The myofibrillar protein carbonyl group increased, whereas sulfhydryl content decreased after thermal processing, indicating that the proteins were oxidized by thermal processing. The magnitude of oxidation is: MS > SS > DS. Different thermal processing methods can exert great influence on color texture and nutrition to Penaeus vannamei, which can provide a theoretical knowledge for consumers to choose the appropriate processing method.


Assuntos
Penaeidae , Animais , Penaeidae/química , Ácidos Graxos/química , Oxirredução , Dessecação , Água
10.
Food Chem X ; 20: 101006, 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-38046180

RESUMO

This study investigated the modification of myofibrillar protein (MP) from the razor clam through phosphorylation by using various phosphate salts, namely, sodium tripolyphosphate (STPP), sodium trimetaphosphate (STMP), sodium polyphosphate (STTP) and sodium pyrophosphate (TSPP), and their mechanisms of action for functional and gelling properties. Fourier transform infrared spectrometry (FTIR) showed that MP introduced phosphate groups during phosphorylation; these phosphates changed the secondary structure. Moreover, MP after phosphorylation led to an increase in solubility, which was more evident in the case of TSPP phosphorylation, leading to the improvement of gel properties. Therefore, TSPP was the phosphate with the best gel properties in the modification of MP, showing the highest phosphorus content, which resulted in better gelling properties owing to its relatively shorter chains. These results showed that phosphate was able to improve protein cross-linking through ion interactions and electrostatic interactions, which ultimately improved the gelling properties of the razor clam protein.

11.
Sci Total Environ ; 900: 165720, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37482353

RESUMO

Aflatoxins are a class of highly toxic mycotoxins. Aflatoxin M1 (AFM1) is hydroxylated metabolite of aflatoxin B1, having comparable toxicity, which is more commonly found in milk. In this study, the whole genome sequencing of Bacillus pumilus E-1-1-1 isolated from feces of 38 kinds of animals, having aflatoxin M1 degradation ability was conducted. Bacterial genome sequencing indicated that a total of 3445 sequences were finally annotated on 23 different cluster of orthologous groups (COG) categories. Then, the potential AFM1 degradation proteins were verified by proteomics; the properties of these proteins were further explored, including protein molecular weight, hydrophobicity, secondary structure prediction, and three-dimensional structures. Bacterial genome sequencing combined with proteomics showed that eight genes were the most capable of degrading AFM1 including three catalases, one superoxide dismutase, and four peroxidases to clone. These eight genes with AFM1 degrading capacity were successfully expressed. These results indicated that AFM1 can be degraded by Bacillus pumilus E-1-1-1 protein and the most degrading proteins were oxidoreductases.


Assuntos
Aflatoxinas , Bacillus pumilus , Animais , Aflatoxina M1/análise , Aflatoxina M1/metabolismo , Aflatoxina M1/toxicidade , Bacillus pumilus/genética , Bacillus pumilus/metabolismo , Proteômica , Aflatoxinas/análise , Aflatoxinas/metabolismo , Leite/química , Genômica , Contaminação de Alimentos/análise
12.
Nutrients ; 15(13)2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37447249

RESUMO

This study evaluated the cholesterol-alleviating effect and underlying mechanisms of chitosan-oligosaccharide (COS) in hypercholesterolemic hamsters. Male hamsters (n = 24) were divided into three groups in a random fashion, and each group was fed one particular diet, namely a non-cholesterol diet (NCD), a high-cholesterol diet (HCD), and an HCD diet substituting 5% of the COS diet for six weeks. Subsequently, alterations in fecal bile acids (BAs), short-chain fatty acids (SCFAs), and gut microflora (GM) were investigated. COS intervention significantly reduced and increased the plasma total cholesterol (TC) and high-density lipoprotein-cholesterol (HDL-C) levels in hypercholesteremic hamsters. Furthermore, Non-HDL-C and total triacylglycerols (TG) levels were also reduced by COS supplementation. Additionally, COS could reduce and increase food intake and fecal SCFAs (acetate), respectively. Moreover, COS had beneficial effects on levels of BAs and GM related to cholesterol metabolism. This study provides novel evidence for the cholesterol-lowering activity of COS.


Assuntos
Quitosana , Microbioma Gastrointestinal , Hipercolesterolemia , Animais , Cricetinae , Masculino , Ácidos e Sais Biliares , Quitosana/farmacologia , Colesterol , Ácidos Graxos Voláteis , Fígado/metabolismo , Mesocricetus , Oligossacarídeos/farmacologia
13.
Food Chem ; 428: 136795, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37450954

RESUMO

Glycation offers a promising potential to improve protein gelling properties in food industries. Therefore, the study was aimed to illustrate the effect of five monosaccharides (erythrose-aldotetrose, xylose-aldopentose, glucose-aldohexose, galactose-aldohexose, and fructose-ketohexose) with different carbon numbers and structure on the structure-gelling relationship of myofibrillar protein (MP) from oyster (Crassostrea gigas). Results showed that monosaccharides significantly increased the glycation degree of MP by increasing sulfhydryl content, forming stable tertiary conformation and decreasing surface hydrophobicity. Moreover, the gel properties of MP like gel strength, water holding capacity, water mobility were improved by alleviating aggregation including the increase of solubility and the decrease of particle sizes. Oyster MP glycated by glucose (aldohexose) possessed the optimal gel properties. Molecular docking simulation showed that hydrogen bonds and hydrocarbon bonds were the mainly non-covalent binding modes. The study will provide a theoretical basis for oyster protein glycation and expand its application on food gel.


Assuntos
Crassostrea , Proteínas Musculares , Animais , Proteínas Musculares/química , Reação de Maillard , Monossacarídeos , Simulação de Acoplamento Molecular , Géis/química , Glucose , Água/química
14.
J Sci Food Agric ; 103(14): 6912-6919, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37319235

RESUMO

BACKGROUND: Citrus residuals are rich in nutrients like pectin, essential oil, and amino acids, which are wasted in the food industry. Moreover, citrus components often coexist with amino acids during emulsion preparation and application. RESULTS: Adding glutamic or arginine after emulsification resulted in a stable emulsion compared with adding them before emulsification. Adding glycine before or after emulsification had no effect on the emulsion stability. Emulsion stability was improved by adding glutamic acid at pH 6. Ionic interaction and hydrogen bonding were the main forms of bonding. The rhamnogalacturonan II domain was the potential binding site for the amino acids. CONCLUSIONS: The emulsions prepared by adding acidic amino acids or basic amino acids after emulsification were stable relative to those in which the amino acids were added before emulsification. However, the order in which neutral amino acids were added did not affect the emulsion stability after storage for 7 days. With an increase in the pH level, droplet size increased and emulsion stability decreased. All the results could be attributed to changes in the structure and properties of citrus pectin, as well as the interaction between citrus pectin and amino acids. This study may expand the application of citrus-derived emulsions in the food industry. © 2023 Society of Chemical Industry.


Assuntos
Aminoácidos , Citrus , Emulsões/química , Citrus/química , Pectinas/química , Concentração de Íons de Hidrogênio
15.
Food Chem X ; 18: 100740, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37342821

RESUMO

Tropomyosin (TM) is the major allergen in clams. This study aimed to evaluate the effects of ultrasound-assisted high temperature-pressure treatment on the structure and allergenicity of TM from clams. The results showed that the combined treatment significantly affected the structure of TM-converting the α-helix to ß-sheet and random coil, and decreasing the sulfhydryl group content, surface hydrophobicity, and particle size. These structural changes caused the unfolding of the protein, disrupting and modifying the allergenic epitopes. The significant reduction in the allergenicity of TM was approximately 68.1% when treated with combined processing (P < 0.05). Notably, an increase in the content of the relevant amino acids and a smaller particle size accelerated the penetration of the enzyme into the protein matrix, resulting in strengthening the gastrointestinal digestibility of TM. These results prove that ultrasound-assisted high temperature-pressure treatment has great potential in reducing allergenicity, benefiting the development of hypoallergenic clam products.

16.
Food Chem ; 418: 136014, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37001361

RESUMO

Valorization of asparagus leafy by-products as a potential source of rutin through selected extraction and purification protocols was investigated. Protocol resulting in the highest extraction yield was first selected. Crude extract was subject to purification via multiple liquid-liquid back extraction using ethanol, methanol or water as a solvent; selection of the most appropriate purification solvent was made based on rutin solubility. The proposed purification protocol yielded yellow-color crystals, which were characterized by fluorescence microscopy, Fourier-transform infrared spectroscopy and liquid chromatography-mass spectrometry to confirm them as rutin. Purity of rutin was confirmed by ultra-performance liquid chromatography at 97.6%; yield of the purified rutin was determined to be 78.2%. The remaining rutin (21.8%) was found in the liquids collected at various stages of purification; such liquids could be recycled using the same purification process. The proposed protocols are simple, yet effective for rutin extraction and purification from asparagus leafy by-products.


Assuntos
Asparagus , Rutina , Rutina/análise , Asparagus/química , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida , Solventes , Verduras/química
17.
Food Res Int ; 166: 112352, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36914307

RESUMO

The aim of this work was to estimate the effects of three recombinant peroxidases (rPODs) on the degradation of aflatoxin M1 (AFM1) in a model solution and were applied in milk and beer to study the AFM1 degradation. Besides, the contents of AFM1 in model solution, milk and beer were evaluated, and the kinetic parameters of rPODs were determined (Michaelis-Menten constant - Km and maximal velocity - Vmax). The optimized reaction conditions (The degradation was over 60 %) for these three rPODs in the model solution were, respectively as follows: pH were 9, 9, and 10; hydrogen peroxide concentrations were 60, 50, and 60 mmol/L; at an ionic strength of 75 mmol/L and reaction temperature of 30 °C with 1 mmol/L K+ or 1 mmol/L Na+. These three rPODs (1 U /mL) presented the maximum activity for degradation of AFM1 of 22.4 %, 25.6 %, and 24.3 % in milk, while 14.5 %, 16.9 %, and 18.2 % in beer, respectively. Meanwhile, the survival rate of Hep-G2 cells raised about 1.4 times after treated with peroxidase-generated AFM1 degradation products. Therefore, POD may be a promising alternative to reduce the pollution of AFM1 in model solution, milk, beer, and minimize their impact on the environment in humans.


Assuntos
Aflatoxina M1 , Leite , Humanos , Animais , Leite/química , Aflatoxina M1/análise , Aflatoxina M1/metabolismo , Peroxidases , Cerveja , Contaminação de Alimentos/prevenção & controle , Contaminação de Alimentos/análise
18.
Food Chem ; 418: 135981, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36996658

RESUMO

Cimicifuga dahurica (Turcz.) Maxim. is an edible natural food and a type of traditional herbal medicine with antipyretic and analgesic properties. In this study, we found that Cimicifuga dahurica (Turcz.) Maxim. extract (CME) has good skin wound healing qualities due to its antibacterial effects on both wound inflammation-related Gram positive (Staphylococcus aureus and Staphylococcus epidermidis) and Gram negative (Escherichia coli and Klebsiella pneumoniae) strains. Using CME as a reducing agent, CME-based Ag nanoparticles (CME-AgNPs) with an average particle size of 7 nm were synthesized. The minimum bactericidal concentration (MBC) of CME-AgNPs against the investigated bacterial species varied from 0.08 to 1.25 mg/mL, indicating much higher antibacterial activity than the pure CME. Additionally, a novel network-like thermosensitive hydrogel spray (CME-AgNPs-F127/F68) was developed and shown a skin wound healing rate of 98.40% in 14 days, demonstrating the spray's potential as a novel wound dressing that accelerates wound healing.


Assuntos
Cimicifuga , Nanopartículas Metálicas , Hidrogéis , Prata/farmacologia , Cicatrização , Antibacterianos/farmacologia
19.
Foods ; 12(3)2023 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-36766032

RESUMO

As the main bioactive component in dried ginger, 6-shogaol has potential hypoglycemic activity, but its mechanism is still unclear. The process of carbohydrate digestion and glucose absorption is closely related to the enzymatic activity of epithelial brush cells, expression of glucose transporters, and permeability of intestinal epithelial cells. Therefore, this study explored the hypoglycemic mechanism of 6-shogaol from the perspective of glucose uptake, absorption transport, and protection of intestinal barrier function. Based on molecular docking, the binding energy of 6-shogaol and α-glucosidase is -6.24 kcal/mol, showing a high binding affinity. Moreover, a-glucosidase enzymatic activity was reduced (-78.96%) when the 6-shogaol concentration was 500 µg/mL. After 6-shogaol intervention, the glucose uptake was reduced; the relative expression of glucose transporters GLUT2 and SGLT1 were down regulated; and tight junction proteins ZO-1, Occludin and Claudin were up regulated in differentiated Caco-2 cells. This study confirmed that 6-shogaol effectively inhibits the activity of α-glucosidase and has beneficial effects on glucose uptake, protection of intestinal barrier function, and promotion of intestinal material absorption.

20.
Food Res Int ; 163: 112183, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36596125

RESUMO

Soybeans are an important plant-based food but its beany flavor and anti-nutritional factors limit its consumption. Fermentation is an effective way to improve its flavor and nutrition. Furu is a popular fermented soybean curd and mainly manufactured in Asia, which has been consumed for thousands of years as an appetizer because of its attractive flavors. This review first classifies furu products on the basis of various factors; then, the microorganisms involved in its fermentation and their various functions are discussed. The mechanisms for the formation of aroma and taste compounds during fermentation are also discussed; and the microbial metabolites and their bioactivities are analyzed. Finally, future prospects and challenges are introduced and further research is proposed. This information is needed to protect the regional characteristics of furu and to regulate its consistent quality. The current information suggests that more in vivo experiments and further clinical trials are needed to confirm its safety and the microbial community needs to be optimized and standardized for each type of furu to improve the production process.


Assuntos
Alimentos de Soja , Alimentos de Soja/análise , Fermentação , Glycine max/metabolismo , Microbiologia de Alimentos , Percepção Gustatória
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA